IV B.Tech - II Semester – Regular Examinations – MAY 2023

NATURAL LANGUAGE PROCESSING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

```
BL – Blooms Level CO – Course Outcome
```

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1. a)	Define Natural Language Processing.	L2	CO1
1. b)	Differentiate between closed class and open class part of speech.	L2	CO1
1. c)	Define Context free grammar.	L2	CO1
1. d)	Draw a dependency parse tree.	L2	CO1
1. e)	What is Relation extraction?	L2	CO1

PART - B

			BL	СО	Max. Marks		
	UNIT-I						
2	a)	Explain the concept of minimum edit	L2	CO2	6 M		
		distance with example.					
	b)	Explain in detail about perplexity Text	L2	CO2	6 M		
		normalization.					

OR						
3	a)	Explain about Evaluating languages models.	L2	CO1	6 M	
	b)	Define smoothing. Summarize the	L2	CO1	6 M	
		concepts of Add k-smoothing.				
UNIT-II						
4	a)	What is POS tagging? Demonstrate POS	L2	CO2	6 M	
		tagging with an example.				
	b)	Demonstrate Viterbi algorithm with an	L3	CO2	6 M	
		example.				
		OR				
5	a)	Summarize the concept of Markov	L2	CO2	6 M	
		chains.				
	b)	Illustrate the features for CRF Named	L3	CO2	6 M	
		entity recognizers.				
		UNIT-III				
6	a)	Describe sentence level constructions and	L2	CO4	6 M	
		grammar rules for English language.				
	b)	What is ambiguity in parsing? Explain	L2	CO4	6 M	
		with an example.				
		OR				
7	a)	Explain in detail about the Verb phrase	L2	CO4	6 M	
		CKY passing.				
	b)	Explain in detail about super tagging.	L2	CO4	6 M	

UNIT-IV						
8	a)	Illustrate with a neat diagram explain the	L3	CO3	6 M	
		configuration of a Transition based				
		dependency parser.				
	b)	Explain basic elements of first order	L2	CO3	6 M	
		logic.				
	OR					
9	a)	Apply Reichenbach's approach for	L3	CO3	6 M	
		primary English tenses.				
	b)	Apply Chu-Liu-Edmonds algorithm to	L3	CO3	6 M	
		parse the sentence "Book that flight".				
		UNIT-V				
10	a)	List 17 relations used in ACE relation	L2	CO3	6 M	
		extraction task.				
	b)	Explain Plutchik wheel of emotion with	L2	CO3	6 M	
		examples.				
OR						
11	a)	Explain supervised relation learning of	L2	CO3	6 M	
		word classifiers.				
	b)	Summarize semi-supervised lexicon	L2	CO3	6 M	
		induction algorithms.				